2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies

Modeling and Control of a Solid Oxide Fuel Cell Auxiliary Power Unit

Moe Khaleel, Brian Koeppel, Stewart Moorehead PNNL May 26, 2004

This presentation does not contain any proprietary or confidential information

A STANSON OF THE PROPERTY OF T

Objectives

SOFC-based APU development with a) control algorithms to optimize fuel efficiency and operating life, and b) models for stack response and structural failure under dynamic loading

Controls

- Develop dynamic system models.
- Determine typical APU usage patterns.
- Collect electrical usage data from a working truck.
- Design control algorithms to optimize fuel efficiency and operating life.

Shock & Vibration

- Identify failure modes under characteristic dynamic loading.
- Determine guidelines for durable SOFC/APU systems.
- Measure truck excitations and experimentally validate the models.
- Define requirements for APU isolation.

Budget

Fiscal Year	Activity	Funding	
2003	Controls	\$300k	
	Shock & Vibration	\$200k	
2004	Controls	\$300k	
	Shock & Vibration	\$200k	

Technical Barriers and Targets

- ▶ DOE Technical Barriers for Transportation Systems and Fuel Cell Components
 - C. Thermal Management
 - D. Fuel Cell Power System Benchmarking
 - P. Durability
- ▶ DOE Technical Targets for Auxiliary Power Units
 - (2010) Efficiency: 35%
 - (2010) Cycle Capability: 500
 - (2015) Durability: 15,000 hours
 - (2010) Start-up Time: 15-30 minutes

Approach Controls Analysis

- Develop advanced algorithms to control an SOFC based APU system for long haul trucks. The controller seeks to optimize fuel efficiency and system operating life.
 - Create a dynamic system model of APU operation.
 - Use experimental validation to improve models.
 - Integrate APU, power electronics and control models into a single operating model.

Approach Shock & Vibration Analysis

- Evaluate mechanical dynamics of APU
 - Simple, fast lumped parameter representation
- Evaluate dynamic response of SOFC stack
 - Assume stack is component most prone to damage
 - Detailed multi-cell stack finite element model
- Evaluate stresses in the stack against failure criteria to determine permissible accelerations
 - Permissible acceleration envelope is defined by criteria
- ► Measure excitation levels from truck frame
- Define APU isolation requirements based on expected excitations for Class VIII trucks

Approach Shock & Vibration Analysis

- Thermal gradient stresses in stack are calculated for expected temperature distribution
- Dynamic stresses are calculated for unit excitation
- ► For elastic response, superposition is used to evaluate failure criteria:
 - Tensile stress-based: $\sigma_1^{fail} = \sigma_1^{thermal} + \beta \sigma_1^{dynamic}$
 - Fracture-based: $K_{1c} = K_1^{thermal} + \beta K_1^{dynamic}$
 - Displacement-based: $\delta_i^{fail} = \delta_i^{thermal} + \beta \delta_i^{dynamic}$
 - λ β is then the limiting excitation level
- Criteria applied to PEN and rigid seal materials
- Developing interfacial seal fracture criterion

Project Safety

- Majority of project is modeling work performed on computers.
- In the model validation experiments performed, all relevant PNNL and DOE laboratory safety procedures were implemented and observed.
- The project has had zero recordable safety incidents.

Project Timeline

Major Milestones

- Year 1
 - Implement Initial System Controller COMPLETE
 - Initial Vibration Model Creation COMPLETE
- Year 2
 - Collect initial data for truck vibration and electrical usage COMPLETE
 - Create Models to Analyze Shock COMPLETE
 - Experimental Validation of Dynamic V-I Relationship COMPLETE
 - Complete Inclusion of Cyclic Loading in Interfacial Failure Models
- Year 3
 - Shock, Vibration and Electrical Data Collection From Class VIII Truck APU
 - Dynamic Bench Testing of APU/Stack for Durability and Isolation
 - Extension of Controls to Full Truck Electrification

Stack Dynamic V-I Validation Experimental Setup

Fuel Cell Test Bed with Furnace, Fuel Source and Test Circuit

Close-up of test circuit

Cell with hearth plate

Cell before assembly

Experimental Circuit Schematic

Pacific Northwest National Laboratory U.S. Department of Energy 10

Raw Experimental Data

Graph shows SOFC voltage versus time. The three load transitions are easily seen.

Dynamic V-I Relationship

Theoretical Model

Voc = open circuit voltage
Rohm = ohmic resistance through cell
Ra = activation loss, caused by slowness of reaction
Ccdl = charge double layer effect capacitance
I = electrical current
s = Laplace variable

Actual Truck APU Load Data

Through collaboration with PACCAR we received the following data on typical APU usage in a real truck

	Peak	Typical		Average
	Load	Load	Duty	Load
Source	(watts)	(watts)	Cycle	(watts)
Audio System	350	50	25%	13
Television/VCR	75	75	15%	11
Satellite or Other Communication System	160	50	10%	5
Laptop Computer	65	65	25%	16
Microwave Oven	1400	1400	3%	42
Air Conditioning	4400	1700	70%	1190
Refrigerator	85	85	50%	43
Coffee Maker	250	250	2%	5
Lighting	100	60	50%	30
Miscellaneous	100	50	25%	13
Inverter Losses @ 15% of Load	300	290		20
TOTAL	7285	4075		1387

- We can use this data to show that an SOFC APU should be capable of providing 4075W steady state.
- The 3210W difference between typical and peak load can be made up with a battery or ultra-capacitor

Materials Testing

Working with PNNL's SECA CTP team to determine elevated temperature strength and failure properties of seal materials for use in

failure criteria

- Materials
 - G18 Glass
- Test methods
 - 4-point bend
 - Tension
 - Torsion

- Improved dynamic analysis capabilities
 - Modal (pre-stressed)
 - Harmonic
 - Spectrum response
 - Random vibration
 - Shock transient*
 - Multiple excitations/directions
- Added failure criteria
 - Component tensile stress
 - Anode fracture
 - Interfacial fracture in progress

3-cell planar stack

- Improved material properties and strengths obtained from SECA CTP
- Existing experimental data obtained for truck APU* and frame vibration amplitudes

Modal Response of 3-cell stack

Permissible Acceleration Envelope

Acceleration envelope

- Defined by union of failure criteria
- Response is limiting at coupled resonant frequencies of the PEN and interconnect (10-1000 Hz)

Permissible Accelerations

Excitation direction

- Validates amplitude criteria needed for 3 axes
- Different modes excited, so cell orientation important

Damping

 Significant influence on response so must include conservative estimates for SOFC materials

Interactions and Collaborations

- PACCAR: Rich Bergstrand, provided experimental APU electrical usage and vibration data.
- Delphi: Steve Shaffer, providing assistance in model validation experiments including shaker table tests.
- ▶ Univ of Illinois, Chicago: Sudip Mazumder, collaboration in the modeling and design of power conversion electronics.
- Georgia Tech: Jianmin Qu, provided cell fracture models.
- SECA-CTP: Use of material data and constitutive models developed under Core Technology Program.

Responses to Previous Year Reviewers' Comments

- Develop strong integration with SECA
 - Working with PNNL and ORNL materials developers to get necessary mechanical data on seals and anodes.
 - Utilizing constitutive and fracture models developed under SECA
 Core Technology Program. In-progress leak model also of interest.
 - Performed dynamic V-I tests on a SECA funded cell.
- Demonstrate interest of industry
 - Using PACCAR provided data for power usage and component vibration.
 - Delphi to provide shaker table facilities for model validation tests.
- Perform experimental validation
 - Tested transient response of SOFC to validate dynamic voltagecurrent transfer function.

Conclusions

- ► The predominant V-I transfer function has one real pole and one zero, yielding a response without overshoot or oscillation.
- The dynamic response is being added to PNNL's SOFC system model.
- Working with University of Illinois, Chicago to design power conditioning electronics based on the dynamic V-I model developed here.
- ► Vibration models predict permissible acceleration envelope from multiple elastic failure criteria for PEN and seals.
- Acceleration limits needed for different orientations due to planar stack sensitivity to loading direction.
- ➤ Will continue to work with PACCAR to collect more detailed truck APU data for electrical usage (load vs. time) and expected vibrations (amplitude and frequency content).

Future Work

- Remainder of FY 2004
 - Define optimization equation for system fuel efficiency.
 - Incorporate power electronics model from Univ of Illinois.
 - Add failure criteria to shock analysis procedures.
 - Integrate interface fracture criteria with FEA model.
 - Define APU isolation requirements.
- ► FY 2005
 - Collection of APU electrical usage data from working truck.
 - Extension of system model and controls to full truck electrification.
 - Data collection for Class VIII truck shock & vibration.
 - Vibration testing of instrumented stack.

